Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum.

نویسندگان

  • L D Smith
  • N Budgen
  • S J Bungard
  • M J Danson
  • D W Hough
چکیده

Glucose dehydrogenase was purified to homogeneity from the thermoacidophilic archaebacterium Thermoplasma acidophilum. The enzyme is a tetramer of polypeptide chain Mr 38,000 +/- 3000, it is catalytically active with both NAD+ and NADP+ cofactors, and it is thermostable and remarkably resistant to a variety of organic solvents. The amino acid composition was determined and compared with those of the glucose dehydrogenases from the archaebacterium Sulfolobus solfataricus and the eubacteria Bacillus subtilis and Bacillus megaterium. The N-terminal amino acid sequence of the Thermoplasma acidophilum enzyme was determined to be: (S/T)-E-Q-K-A-I-V-T-D-A-P-K-G-G-V-K-Y-T-T-I-D-M-P-E.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Archaebacterial Citrate Synthases: The Enzymes from the Thermoacidophiles Sulfolobus acidocaldarius and Thermoplasma acidophilum Show pro-S Stereospecificity

Citrate synthase from the thermoacidophilic archaebacterium Sulfolobus acidocaldarius was purified 365-fold to electrophoretic homogeneity. At 40 °C and pH 8.1 the homogeneous enzyme shows a specific activity of 73 units per mg, which corresponds to a turnover number of 44 sec-1. Citrate synthase from S. acidocaldarius shows pro-S stereospecificity, as is found with a partially purified prepara...

متن کامل

Analysis of bacterial glucose dehydrogenase homologs from thermoacidophilic archaeon Thermoplasma acidophilum: finding and characterization of aldohexose dehydrogenase.

The NADP(+)-preferring glucose dehydrogenase from thermoacidophilic archaeon Thermoplasma acidophilum has been characterized, and its crystal structure has been determined (Structure, 2:385-393, 1994). Its sequence and structure are not homologous to bacterial NAD(P)(+)-dependent glucose dehydrogenases, and its molecular weight is also quite defferent. On the other hand, three functionally unkn...

متن کامل

Characterization of the DNA gyrase from the thermoacidophilic archaeon Thermoplasma acidophilum.

Thermoplasma acidophilum is sensitive to the antibiotic drug novobiocin, which inhibits DNA gyrase. We characterized DNA gyrases from T. acidophilum strains in vitro. The DNA gyrase from a novobiocin-resistant strain and an engineered mutant were less sensitive to novobiocin. The novobiocin-resistant gyrase genes might serve as T. acidophilum genetic markers.

متن کامل

Structural insights into unique substrate selectivity of Thermoplasma acidophilum D-aldohexose dehydrogenase.

The D-aldohexose dehydrogenase from the thermoacidophilic archaea Thermoplasma acidophilum (AldT) belongs to the short-chain dehydrogenase/reductase (SDR) superfamily and catalyzes the oxidation of several monosaccharides with a preference for NAD(+) rather than NADP(+) as a cofactor. It has been found that AldT is a unique enzyme that exhibits the highest dehydrogenase activity against D-manno...

متن کامل

A Reexamination of Thioredoxin Reductase from Thermoplasma acidophilum, a Thermoacidophilic Euryarchaeon, Identifies It as an NADH-Dependent Enzyme

Flavin-containing Trx reductase (TrxR) of Thermoplasma acidophilum (Ta), a thermoacidophilic facultative anaerobic archaeon, lacks the structural features for the binding of 2'-phosphate of nicotinamide adenine dinucleotide phosphate (NADPH), and this feature has justified the observed lack of activity with NADPH; NADH has also been reported to be ineffective. Our recent phylogenetic analysis i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 261 3  شماره 

صفحات  -

تاریخ انتشار 1989